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The process pp̄ → γ + jet + X is studied using 1.0 fb−1 of data collected by the D0 detector at the
Fermilab Tevatron pp̄ collider at a center-of-mass energy

√
s = 1.96 TeV. Photons are reconstructed in

the central rapidity region |yγ | < 1.0 with transverse momenta in the range 30 < pγ
T < 400 GeV while

jets are reconstructed in either the central |yjet| < 0.8 or forward 1.5 < |yjet| < 2.5 rapidity intervals with
pjet
T > 15 GeV. The differential cross section d3σ /dpγ

T dyγ dyjet is measured as a function of pγ
T in four

regions, differing by the relative orientations of the photon and the jet in rapidity. Ratios between the
differential cross sections in each region are also presented. Next-to-leading order QCD predictions using
different parameterizations of parton distribution functions and theoretical scale choices are compared to
the data. The predictions do not simultaneously describe the measured normalization and pγ

T dependence
of the cross section in the four measured regions.

Published by Elsevier B.V.

The production of a photon with associated jets in the final
state is a powerful probe of the dynamics of hard QCD interac-
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tions [1–6]. Different angular configurations between the photon
and the jets can be used to extend inclusive photon production
measurements [7–10] and simultaneously test the underlying dy-
namics of QCD hard-scattering subprocesses in different regions of
parton momentum fraction x and large hard-scattering scales Q 2.

In this Letter, we present an analysis of photon plus jets pro-
duction in pp̄ collisions at a center-of-mass energy

√
s = 1.96 TeV

in which the most-energetic (leading) photon is produced cen-
trally with a rapidity |yγ | < 1.0.7 The cross section as a function

7 y = 1/2 ln(E − pL)/(E + pL), where E is the energy and pL is the longitudinal
momenta with respect to the z axis.
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Fig. 1. The fraction of events, estimated using the pythia event generator, produced
via the qg → qγ subprocess relative to the total associated production of a direct
photon and a jet for each of the four measured configurations of the leading jet and
leading photon rapidities.

of photon transverse momentum pγ
T is measured differentially for

four separate angular configurations of the highest pT (leading)
jet and the leading photon rapidities. The leading jet is required
to be in either the central (|yjet| < 0.8) or forward (1.5 < |yjet| <

2.5) rapidity intervals, with pjet
T > 15 GeV, and the four angu-

lar configurations studied are: central jets with yγ · yjet > 0 and
with yγ · yjet < 0, and forward jets with yγ · yjet > 0 and with
yγ · yjet < 0. The total x and Q 2 region covered by the measure-
ment is 0.007 ! x ! 0.8 and 900 " Q 2 ≡ (pγ

T )2 " 1.6 × 105 GeV2,
extending the kinematic reach of previous photon plus jet mea-
surements [11–17]. Ratios between the differential cross sections
in the four studied angular configurations are also presented. The
measurements are compared to the corresponding theoretical pre-
dictions.

Isolated final-state photons produced in pp̄ → γ + jet + X
events are expected to mainly originate “directly” from QCD
Compton-like qg → qγ scattering or qq̄ → gγ annihilation sub-
processes. In Fig. 1 the expected contribution, estimated using
pythia [18] Monte Carlo (MC) event generator with the CTEQ6.5M
parton distribution function (PDF) set [19], of the Compton-like
partonic scattering process to the total associated production of
a photon and a jet is shown for each of the four measured ra-
pidity intervals. The parton distribution functions entering into
the theoretical predictions have substantial uncertainties, partic-
ularly for the gluon contributions at small x, large x and large
Q 2 [19,20]. The measurement intervals probe different regions
of parton momentum-fraction space of the two initial interact-
ing partons, x1,2. For example at pγ

T = 40 GeV, in events with a
central leading jet, the yγ · yjet > 0 region covers adjacent x1 and
x2 intervals (0.016 ! x1 ! 0.040 and 0.040 ! x2 ! 0.100), while
for events with yγ · yjet < 0, the x1 and x2 intervals are similar
(0.029 ! x1 ! 0.074, 0.027 ! x2 ! 0.065). In events with a forward
leading jet, intervals of small and large x are covered (0.009 ! x1 !
0.024, 0.110 ! x2 ! 0.300 for yγ · yjet > 0 and 0.097 ! x1 ! 0.264,
0.022 ! x2 ! 0.059 for yγ · yjet < 0). Here x1,2 are defined us-
ing the leading order approximation x1,2 = (pγ

T /
√
s)(e±yγ + e±yjet)

[1–6].
The data presented here correspond to an integrated luminosity

of 1.01 ± 0.06 fb−1 [21] collected using the D0 detector at the
Fermilab Tevatron pp̄ collider operating at a center-of-mass energy

Fig. 2. Normalized distribution of the ANN output ONN for data, γ + jet signal MC,
and dijet background MC events for 44 < pγ

T < 50 GeV after application of the main
selection criteria.

√
s = 1.96 TeV. A detailed description of the D0 detector can be

found in [22] and only an overview of the detector components
relevant to this analysis is given here.

Photon candidates are formed from clusters of calorimeter cells
in the central part of the liquid-argon and uranium calorimeter.
The central calorimeter covers the pseudorapidity range |η| < 1.1
and two end calorimeters cover 1.5 < |η| < 4.2.8 The electromag-
netic (EM) section of the central calorimeter contains four longi-
tudinal layers of 2, 2, 7, and 10 radiation lengths, and is finely-
segmented transversely into cells of size $η × $φ = 0.1 × 0.1
(0.05 × 0.05 in the third EM layer), providing good angular res-
olution for photons and electrons. The position and width of the
Z boson mass peak, reconstructed from Z → e+e− events, are
used to determine the EM calorimeter calibration factors and the
EM energy resolution [23]. The central section of the calorime-
ter surrounds a central preshower detector, with three concentric
cylindrical layers of scintillator strips, and a tracking system con-
sisting of silicon microstrip and scintillating fiber trackers located
within a 2 T solenoidal magnetic field.

The D0 tracking system is used to select events which contain
a primary collision vertex, reconstructed with at least three tracks,
within 50 cm of the center of the detector along the beam axis.
The efficiency of the vertex requirement varies as a function of
instantaneous luminosity from 92% to 96%.

Photon candidates with rapidity |yγ | < 1.0 are selected from
clusters of calorimeter cells within a cone of radius
R≡

√
($η)2 + ($φ)2 = 0.4 defined around a seed tower [22]. The

final cluster energy is then re-calculated from the inner cone with
R = 0.2. The data are selected using a combination of triggers
based on photon EM shower profiles in the calorimeter and EM
cluster pT thresholds. The total trigger efficiency is (96–97)% for
photon candidates with pγ

T ≈ 32 GeV and greater than 99% for
pγ
T > 40 GeV. The selected clusters are required to have greater

than 96% of their total energy contained in the EM calorimeter
layers. Isolated clusters are selected by requiring that the energy
EEM(R= 0.2), calculated within the inner cone of radius R= 0.2,
fulfills the condition [Etotal(R = 0.4) − EEM(R = 0.2)]/EEM(R =
0.2) < 0.07, where Etotal(R= 0.4) is the summed EM and hadronic

8 Pseudorapidity is defined as η = − ln[tan(θ/2)], where θ is the polar angle with
respect to the proton beam direction.
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Fig. 3. Normalized distribution of the ANN output ONN for electrons from Z0 boson
decays in data and MC events.

energy within a cone of radius R = 0.4. The candidate EM clus-
ter is required not to be spatially matched to a reconstructed
track. This is accomplished by computing a χ2 function evaluating
the consistency, within uncertainties, between the reconstructed η
and φ positions of the cluster and the closest track in the finely-
segmented third layer of the EM calorimeter. The corresponding
χ2 probability is required to be < 0.1%. Background contributions
to the direct photon sample from cosmic rays and from isolated
electrons, originating from the leptonic decays of W bosons, im-
portant at high pγ

T [24], are suppressed by requiring the missing
transverse energy /ET , calculated as a vector sum of the trans-
verse energies of all calorimeter cells, to satisfy the condition
/ET < 12.5 + 0.36 pγ

T GeV. The longitudinal segmentation of the
EM calorimeter and central preshower detector allow us to esti-
mate the photon candidate direction and vertex coordinate along
the beam axis (“photon vertex pointing”). This vertex is required
to lie within 10 cm of the event primary vertex reconstructed from
charged particles.

Photons arising from decays of π0 and η mesons are already
largely suppressed by the requirements above, and especially by
photon isolation, since these mesons are produced mainly within
jets during fragmentation and are surrounded by other particles.
To better select photons and estimate the residual background,
an artificial neural network (ANN) is constructed using the jetnet
package [25]. The following three variables are used in the ANN:
the number of cells in the first EM layer belonging to the clus-
ter, the fraction of the cluster energy deposited in the first EM
layer, and the scalar sum of charged particle transverse momenta
in the hollow cone 0.05 "R " 0.4 around the photon cluster di-
rection. The resulting ANN output, ONN, after applying all data
selection criteria, is shown, normalized to unit area, in Fig. 2 for
44 < pγ

T < 50 GeV. The output is compared to photon signal events
and dijet background events simulated using pythia. The signal
events may contain photons originating from the parton-to-photon
fragmentation process. For this reason, the background events, pro-
duced with QCD processes in pythia, were preselected to exclude
the bremsstrahlung photons produced from partons. Signal and
background MC events were processed through a geant-based [26]
simulation of the D0 detector and the same reconstruction code as
used for the data. The ANN is tested using electrons from Z bo-
son decays and the resulting normalized data and MC distributions
are compared in Fig. 3. Photon candidates are selected by the re-
quirement ONN > 0.7 which has good background rejection and a

signal efficiency in the range (93–97)%. The signal selection effi-
ciency decreases by about 4% with increasing pγ

T from 30 GeV to
300 GeV due to the ONN > 0.7 requirement. The total photon+ jet
selection efficiency after applying all the selection criteria, includ-
ing the ANN and the /ET requirements, is (63–77)% as a function
of pγ

T with an overall systematic uncertainty of (4.7–5.2)%. Main
sources of inefficiency are the isolation, anti-track matching, ANN,
and the photon vertex pointing cuts.

Events containing at least one hadronic jet are selected. Jets are
reconstructed using the D0 Run II jet-finding algorithm with a cone
of radius 0.7 [27], and are required to satisfy quality criteria which
suppress background from leptons, photons, and detector noise ef-
fects. Jet energies are corrected to the particle level. The leading
jet should have pjet

T > 15 GeV and |yjet| < 0.8 or 1.5 < |yjet| < 2.5.
The leading photon candidate and the leading jet are also required
to be separated in η − φ space by $R(γ , jet) > 0.7. The leading
jet total selection efficiency varies from 94% to almost 100% and
takes into account any migrations between leading and second jet
from the particle to the reconstruction level. The total systematic
uncertainty on this efficiency is 5.7% at pγ

T ( 30 GeV, decreasing
to about 2% at pγ

T # 200 GeV. The measurement is not very sen-
sitive to jet energy scale corrections since it is performed in bins
of pγ

T (with pγ
T > 30 GeV) and only information on the jet angular

direction is used.
In total, about 1.4 million candidate events are selected after

application of all selection criteria. A correction for the “γ + jet”
event purity P is then applied to account for the remaining back-
ground in the region ONN > 0.7. The distribution of the ANN out-
put for the simulated photon signal and dijet background samples
are fitted to the data for each pγ

T bin using a maximum like-
lihood fit [28] to obtain the fractions of signal and background
components in the data without constraining the fractions of sig-
nal and background samples in the fit to be in the [0,1] range.
The data and fitted sum of the weighted signal and background
MC distributions of ONN are found to be compatible with χ2/ndf
values in the range 0.2–1.3.9 The resulting purities are shown in
Fig. 4 for each measurement region. The pγ

T dependence of the
purity is fitted in each region using a two parameter function
P = 1 − exp(a + bpγ

T ). The result of the fits together with their
statistical errors are shown in Fig. 4. The systematic uncertain-
ties on the fit are estimated using alternative fitting functions and
varying the number of bins in the fitting of the ANN output distri-
bution. An additional systematic uncertainty due to the fragmen-
tation model implemented in pythia is also taken into account.

This uncertainty is estimated by independently varying the pro-
duction rates for π0, η and K 0

s mesons by ±50% resulting in an
uncertainty of 5% at pγ

T ( 30 GeV, 2% at pγ
T ( 50 GeV and 1% at

pγ
T # 70 GeV [10].
To study whether isolated bremsstrahlung photons have differ-

ent selection efficiencies from direct photons, we have extracted
them from the dijet events simulated with pythia. We have found
that their admixture to the direct photon sample gives an over-
all photon selection efficiency consistent within uncertainties with
that obtained for just direct photons. The shapes of the distribu-
tions for the photon ANN output ONN, as well as the efficiencies
to pass the cut ONN > 0.7 for both types of photons, are in very
good agreement.

The differential cross section d3σ /dpγ
T dyγ dyjet for the process

pp̄ → γ + jet + X is obtained from the number of data events in
each interval, after applying corrections for background, efficiency,
and acceptance effects, divided by the integrated luminosity and

9 Only statistical uncertainties in the γ + jet MC, dijet MC and data samples are
taken into account in the calculation of χ2.
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Fig. 4. The purity of the selected pp̄ → γ + jet+ X sample as a function of pγ
T for each measured configuration of photon and jet rapidities. The results of the 1−exp(a+bpγ

T )

functional fits are shown by the solid lines, together with the systematic uncertainties (dotted lines), and the total uncertainties (dashed lines).

Fig. 5. The total and main sources of systematic uncertainty for the cross section
measured in the |yjet| < 0.8, yγ · yjet > 0 rapidity region.

the widths of the interval in the photon transverse momentum,
photon rapidity, and jet rapidity. The data are also corrected for pT
bin-migration effects which result from the finite energy resolution
of the EM calorimeter using an analytical Ansatz method [29] and
the measured EM energy resolution determined from the Z boson
peak. The correction factors range from (1–5)% with about a 1%
uncertainty.

The total (δσ exp
tot ) and main sources of experimental system-

atic uncertainty are shown for the |yjet| < 0.8, yγ · yjet > 0 region
in Fig. 5. Similar uncertainties are found for the other measured
regions. The largest uncertainties are assigned to the purity es-
timation [(10–4)%], photon and jet selections [(7.7–5.2)%], photon
energy scale [(4.2–6.0)%], and the integrated luminosity (6.1%). The
uncertainty ranges above are quoted with uncertainty at low pγ

T

Fig. 6. The measured differential pp̄ → γ + jet + X cross section as a function of
pγ
T for the four measured rapidity intervals. For presentation purposes, the cross

section results for central (|yjet| < 0.8) jets with yγ · yjet > 0 and for forward
(1.5 < |yjet| < 2.5) jets with yγ · yjet > 0 and yγ · yjet < 0 are scaled by factors
of 5, 0.1 and 0.3, respectively. The data are compared to the theoretical NLO QCD
predictions using the jetphox package [32] with the CTEQ6.5M PDF set [19] and
renormalization, factorization and fragmentation scales µR = µF = µ f = pγ

T f (y*).

first and at high pγ
T second. The systematic uncertainty on the

photon selection is due mainly to the anti-track match cut (3%), a
correction due to observed data/MC difference in the efficiency of
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Table 1
Differential cross sections d3σ /dpγ

T dyγ dyjet and uncertainties for the |yjet| < 0.8,
yγ · yjet > 0 rapidity interval

pγ
T bin

(GeV)
〈pγ

T 〉
(GeV)

Cross section
(pb/GeV)

δσstat
(%)

δσsyst
(%)

δσ exp
tot

(%)

30–34 31.9 3.08× 101 0.2 14.2 14.2
34–39 36.3 1.74× 101 0.3 13.1 13.1
39–44 41.3 9.76 × 100 0.4 12.4 12.4
44–50 46.8 5.60 × 100 0.5 11.9 11.9
50–60 54.6 2.76 × 100 0.6 11.5 11.5
60–70 64.6 1.24× 100 0.9 11.0 11.0
70–80 74.7 6.25 × 10−1 1.2 10.8 10.9
80–90 84.7 3.32 × 10−1 1.7 10.6 10.7
90–110 99.0 1.51 × 10−1 1.8 10.6 10.7
110–130 119.1 5.79 × 10−2 2.9 10.5 10.9
130–150 139.2 2.56 × 10−2 4.3 10.7 11.5
150–170 159.3 1.17 × 10−2 6.5 10.9 12.7
170–200 183.6 5.80 × 10−3 7.6 11.0 13.3
200–230 213.8 2.33× 10−3 11.8 11.0 16.1
230–300 259.5 7.25 × 10−4 13.8 10.7 17.5
300–400 340.5 7.96 × 10−5 35.3 10.9 36.9

Table 2
Differential cross sections d3σ /dpγ

T dyγ dyjet and uncertainties for the |yjet| < 0.8,
yγ · yjet < 0 rapidity interval

pγ
T bin

(GeV)
〈pγ

T 〉
(GeV)

Cross section
(pb/GeV)

δσstat
(%)

δσsyst
(%)

δσ exp
tot

(%)

30–34 31.9 2.51 × 101 0.3 15.7 15.7
34–39 36.3 1.42 × 101 0.3 13.9 13.9
39–44 41.3 7.90 × 100 0.4 12.6 12.6
44–50 46.8 4.48 × 100 0.5 11.9 11.9
50–60 54.6 2.20 × 100 0.6 11.5 11.5
60–70 64.6 9.99 × 10−1 0.9 11.1 11.1
70–80 74.7 4.98× 10−1 1.3 10.9 11.0
80–90 84.7 2.67 × 10−1 1.8 10.7 10.9
90–110 99.0 1.26 × 10−1 1.9 10.7 10.9
110–130 119.1 4.74× 10−2 3.1 10.6 11.1
130–150 139.2 2.07× 10−2 4.7 10.9 11.9
150–170 159.3 1.08× 10−2 6.6 11.2 13.0
170–200 183.6 5.23 × 10−3 7.7 11.7 14.0
200–230 213.8 1.90 × 10−3 13.0 11.6 17.4
230–300 259.5 5.93 × 10−4 15.0 11.2 18.7
300–400 340.5 5.32 × 10−5 46.1 12.9 47.8

Table 3
Differential cross sections d3σ /dpγ

T dyγ dyjet and uncertainties for the 1.5 <

|yjet| < 2.5, yγ · yjet > 0 rapidity interval

pγ
T bin

(GeV)
〈pγ

T 〉
(GeV)

Cross section
(pb/GeV)

δσstat
(%)

δσsyst
(%)

δσ exp
tot

(%)

30–34 31.9 1.67 × 101 0.3 14.7 14.7
34–39 36.3 8.74× 100 0.4 13.5 13.5
39–44 41.3 4.53 × 100 0.5 12.8 12.8
44–50 46.8 2.36 × 100 0.7 12.4 12.4
50–60 54.5 1.02× 100 0.8 11.8 11.8
60–70 64.6 3.96 × 10−1 1.4 11.2 11.3
70–80 74.6 1.71× 10−1 2.1 10.8 11.0
80–90 84.7 7.76 × 10−2 3.2 10.8 11.3
90–110 98.8 3.05× 10−2 3.6 10.7 11.3
110–130 118.9 8.27 × 10−3 6.9 11.0 13.0
130–150 139.0 2.85 × 10−3 11.8 11.5 16.5
150–200 169.4 3.15× 10−4 23.0 12.1 26.0

the main photon selection criteria found from Z → ee events [(1.5–
2)%], the photon vertex pointing requirement (2%), the ANN cut
(2%), and the uncertainty on the parameterized photon selection
efficiency (< 1%). The total experimental systematic uncertainty for
each data point is obtained by adding all the individual contribu-
tions in quadrature.

The result for each region is presented as a function of pγ
T in

Fig. 6 and Tables 1–4. The data points are plotted at the value

Table 4
Differential cross sections d3σ /dpγ

T dyγ dyjet and uncertainties for the 1.5 <

|yjet| < 2.5, yγ · yjet < 0 rapidity interval

pγ
T bin

(GeV)
〈pγ

T 〉
(GeV)

Cross section
(pb/GeV)

δσstat
(%)

δσsyst
(%)

δσ exp
tot

(%)

30–34 31.9 8.08× 100 0.4 15.6 15.6
34–39 36.3 4.36× 100 0.4 14.2 14.2
39–44 41.3 2.23× 100 0.6 13.0 13.0
44–50 46.8 1.16× 100 0.8 12.3 12.3
50–60 54.5 5.28× 10−1 1.0 11.7 11.7
60–70 64.6 2.08× 10−1 1.7 11.3 11.4
70–80 74.6 9.18× 10−2 2.6 11.2 11.5
80–90 84.7 4.61× 10−2 3.7 11.3 11.9
90–110 98.8 1.64× 10−2 4.5 11.2 12.1
110–130 118.9 5.31× 10−3 8.2 11.1 13.8
130–150 139.0 1.79× 10−3 14.1 11.2 18.0
150–200 169.4 3.04× 10−4 23.0 11.3 25.6

〈pγ
T 〉 for which a value of the smooth function describing the cross

section equals the average cross section in the bin [30]. The data
cover six orders of magnitude in the cross section for events with
|yjet| < 0.8, falling more rapidly over four orders of magnitude for
events with 1.5 < |yjet| < 2.5.

The data are compared to next-to-leading order (NLO) QCD
predictions obtained using jetphox [31,32], with CTEQ6.5M PDF
[19] and BFG fragmentation functions of partons to photons [33].
The renormalization, factorization, and fragmentation scales (µR ,
µF , and µ f ) are set equal to pγ

T f (y*), where f (y*) = {[1 +
exp(−2|y*|)]/2}1/2 and y* = 0.5(yγ − yjet) [34]. The theoretical
predictions include selection criteria on the photon and jet similar
to those applied in the experimental analysis. In particular, an iso-
lation requirement on the photon of [Etotal(R = 0.4) − Eγ ]/Eγ <
0.07 is made, where Etotal(R= 0.4) is the total energy around the
photon in a cone of radius R = 0.4, and Eγ is the photon en-
ergy. This requirement suppresses the relative contribution from
photons produced in the fragmentation process, and leads to a
more consistent comparison with the experimental result. Correc-
tions for the underlying event and parton-to-hadron fragmentation
contributions, estimated using pythia, are found to be negligibly
small and are not included. To make a more detailed comparison,
the ratio of the measured cross section to the NLO QCD predic-
tion is taken in each interval and the results are shown in Fig. 7.
The inner error bars reflect the statistical uncertainty only, and the
outer error bars are the total statistical and pT -dependent system-
atic uncertainties summed in quadrature. Most of these systematic
uncertainties, associated with the parameterizations of the pho-
ton and jet selection efficiencies, purity (including the uncertainty
from the pythia fragmentation model), photon pT correction, and
calorimeter energy scale, have large (> 80%) bin-to-bin correla-
tions in pγ

T . Systematic pγ
T -independent uncertainties from the

luminosity measurement, photon selection efficiency caused by the
anti-track matching, ANN and photon vertex pointing, acceptance
(1.5%), and unfolding (1%) lead to a total 7.8% overall normalization
uncertainty and are not shown in Fig. 7.

The prediction using the CTEQ6.5M PDF and BGF fragmenta-
tion sets does not describe the shape of the cross section over
the whole measured range. In particular, the prediction is above
the data for events with |yjet| < 0.8 in the region pγ

T > 100 GeV
and below the data for jets produced in the 1.5 < |yjet| < 2.5,
yγ · yjet > 0 rapidity region for pγ

T < 50 GeV. Most of the data
points in these pγ

T and rapidity regions are (1–1.5) δσtot outside
of the CTEQ6.5M PDF set uncertainty range which is shown by the
shaded region in the figure and calculated according to the pre-
scription in [19]. Note that the data-to-theory ratios have a shape
similar to those observed in the inclusive photon cross sections
measured by the UA2 [7], CDF [8] and D0 [10] collaborations.
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Fig. 7. The ratios of the measured triple-differential cross section, in each measured interval, to the NLO QCD prediction using jetphox [32] with the CTEQ6.5M PDF set and all
three scales µR,F , f = pγ

T f (y*). The solid vertical line on the points shows the statistical and pT -dependent systematic uncertainties added in quadrature, while the internal
line shows the statistical uncertainty. The two dotted lines represent the effect of varying the theoretical scales by a factor of two. The shaded region is the CTEQ6.5M
PDF uncertainty. The dashed and dash-dotted lines show ratios of the jetphox predictions with MRST 2004, Alekhin, and ZEUS 2005 to CTEQ6.5M PDF sets. Systematic
uncertainties have large (> 80%) pγ

T bin-to-bin correlations. There is a common 7.8% normalization uncertainty that is not shown on the data points.

The dotted lines in Fig. 7 show the effect of setting the renor-
malization, factorization, and fragmentation scales to 0.5pγ

T f (y*)

(upper dotted line) and 2pγ
T f (y*) (lower dotted line). The effect

on the normalization is (9–11)%, except for jets in the 1.5 < |yjet| <
2.5, yγ · yjet < 0 rapidity range where it is (18–20)%. The scale
variation is not able to simultaneously accommodate the measured
differential cross sections in all of the measured regions. The ratios
of the NLO QCD prediction with the MRST 2004 [35], Alekhin [36],
and ZEUS 2005 [37] PDF sets to the prediction obtained using the
CTEQ6.5M PDF set are also presented in the figure. The shapes of
the predictions are very similar, especially for forward jet produc-
tion, with the different PDF sets.

The ratios of the predicted cross sections with the default
scales [µR = µF = µ f = pγ

T f (y*)] to those with all the scales set
equal to pγ

T are presented for each of the four kinematic regions
as a function of pγ

T in Fig. 8. For each measured region, the new
prediction is smaller than the default case across the entire pγ

T
range, most notably in the forward jet rapidity intervals where this
choice of scale leads to a poorer level of agreement between data
and theory.

Uncertainties related to the photon production due to the frag-
mentation mechanism are also studied separately using the jet-
phox package. The ratio of the pp̄ → γ + jet + X cross section

for the direct photon contribution to the sum of direct and frag-
mentation contributions is shown, for the chosen photon isolation
criteria, in each of the four measured regions in Fig. 9. For all re-
gions, the fragmentation contribution decreases with increasing pγ

T
[31,38,39] and is largest for the 1.5 < |yjet| < 2.5, yγ · yjet < 0
region. A variation in the fragmentation scale by a factor of four
leads to only a (2–3)% change in the total predicted cross section.
Similarly a change in default set of fragmentation functions (BFG
Set 1 to BFG Set 2) results in a cross section change of ! 1%.

A possible contribution to the theoretical cross section from
threshold resummation has been estimated [40] for inclusive direct
photon production at the Tevatron and found to be ! (2.5–3.0)%
for pγ

T ! 350 GeV.
The experimental systematic uncertainties are reduced further

by measuring the ratios between the differential cross sections
D = d3σ /dpγ

T dyγ dyjet in the different regions. Most of the sys-
tematic uncertainties related to the identification of central pho-
tons then cancel, and only systematic uncertainties related to the
pp̄ → γ + jet + X event purities and the jet selection efficiency
(when measuring ratios between central and forward jet regions)
remain. Measured ratios between the differential cross sections
in the different regions are presented in Fig. 10 and Tables 5–
10. The overall experimental uncertainty is largest in the first
and last pγ

T bins and ranges from (3–9)% across most of the pγ
T
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Fig. 8. Ratio of the predicted cross section with µR,F , f = pγ
T f (y*) to those with

µR,F , f = pγ
T in each measured region.

Fig. 9. The ratios of the pp̄ → γ + jet + X cross section with just the direct (non-
fragmentation) contribution to the total (direct + fragmentation) cross section esti-
mated with jetphox for each measured region.

range. The NLO QCD predicted cross section ratios estimated us-
ing jetphox are also presented for scale choices µR,F , f = pγ

T f (y*),
µR,F , f = 0.5pγ

T f (y*), and µR,F , f = 2pγ
T f (y*). The scale uncer-

tainty of the predicted ratios is " 3% and about (3.5–7.5)% for the
ratio of cross sections in the two forward jet rapidity intervals.
The shapes of the measured ratios between the cross sections in
the different regions, in general, are qualitatively reproduced by
the theory. A quantitative difference, however, between theory and
the measurement is observed for the ratios of the central jet re-
gions to the forward 1.5 < |yjet| < 2.5, yγ · yjet > 0 region, even
after the theoretical scale variation is taken into account. The ratio
between the two forward jet cross sections suggests a scale choice
µR,F , f ( 2pγ

T f (y*). However, the ratios of the central jet regions
to the forward 1.5 < |yjet| < 2.5, yγ · yjet < 0 region suggest a the-
oretical scale closer to µR,F , f ( 0.5pγ

T f (y*).
In summary, the differential cross section d3σ /dpγ

T dyγ dyjet

for the process pp̄ → γ + jet + X is measured for central photons
(|yγ | < 1.0) separately for four different rapidity configurations be-
tween the leading photon and the leading jet. The data cover six
orders of magnitude in the cross section as a function of pγ

T for
events with jets in |yjet| < 0.8, and extend the kinematic reach of
previous photon plus jet measurements. Next-to-leading order QCD

Table 5
Ratios of the differential cross sections in the |yjet| < 0.8, yγ · yjet < 0 rapidity re-
gion to the |yjet| < 0.8, yγ · yjet > 0 rapidity region

pγ
T bin

(GeV)
Ratio (r) δσstat

(%)
δσsyst
(%)

δσ exp
tot

(%)

30–34 0.81 0.4 9.1 9.1
34–39 0.81 0.4 7.8 7.8
39–44 0.81 0.6 6.0 6.0
44–50 0.80 0.7 4.8 4.8
50–60 0.80 0.8 3.7 3.8
60–70 0.81 1.3 3.1 3.3
70–80 0.80 1.8 2.9 3.4
80–90 0.81 2.5 2.8 3.8
90–110 0.83 2.6 2.8 3.8
110–130 0.82 4.3 2.7 5.0
130–150 0.81 6.4 2.4 6.9
150–170 0.93 9.3 2.2 9.5
170–200 0.90 10.8 2.1 11.0
200–230 0.81 17.6 2.0 17.7
230–300 0.82 20.4 1.8 20.4
300–400 0.67 58.0 0.1 58.0

Table 6
Ratios of the differential cross sections in the |yjet| < 0.8, yγ · yjet > 0 rapidity re-
gion to the 1.5 < |yjet| < 2.5, yγ · yjet > 0 rapidity region

pγ
T bin

(GeV)
Ratio (r) δσstat

(%)
δσsyst
(%)

δσ exp
tot

(%)

30–34 1.85 0.4 11.7 11.7
34–39 1.99 0.5 10.0 10.0
39–44 2.15 0.7 8.6 8.7
44–50 2.37 0.9 7.6 7.7
50–60 2.70 1.0 6.7 6.8
60–70 3.14 1.6 5.8 6.1
70–80 3.66 2.5 5.0 5.5
80–90 4.28 3.6 4.5 5.8
90–110 4.97 4.0 4.2 5.8
110–130 7.00 7.5 3.9 8.4
130–150 9.01 12.6 3.6 13.1

Table 7
Ratios of the differential cross sections in the |yjet| < 0.8, yγ · yjet < 0 rapidity re-
gion to the 1.5 < |yjet| < 2.5, yγ · yjet > 0 rapidity region

pγ
T bin

(GeV)
Ratio (r) δσstat

(%)
δσsyst
(%)

δσ exp
tot

(%)

30–34 1.51 0.4 11.9 11.9
34–39 1.62 0.5 10.6 10.6
39–44 1.74 0.7 9.1 9.1
44–50 1.90 0.9 8.0 8.0
50–60 2.16 1.0 7.0 7.0
60–70 2.53 1.7 5.9 6.2
70–80 2.92 2.5 5.0 5.6
80–90 3.44 3.7 4.5 5.8
90–110 4.14 4.1 4.3 5.9
110–130 5.73 7.6 4.0 8.6
130–150 7.27 12.8 3.7 13.3

predictions, using a few different modern parameterizations of par-
ton distribution functions, are unable to describe the shape of the
pγ
T dependence of the cross section across the entire measured

range. Similarly, theoretical scale variations are unable to simul-
taneously describe the data-to-theory ratios in each of the four
measured regions. Thus, the data presented in this Letter, show a
need for an improved and consistent theoretical description of the
γ + jet production process.
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different scales: µR,F , f = µ0, 0.5µ0, and 2µ0, where µ0 = pγ

T f (y*).

Table 8
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FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colcien-

Table 9
Ratios of the differential cross sections in the |yjet| < 0.8, yγ · yjet > 0 rapidity re-
gion to the 1.5 < |yjet| < 2.5, yγ · yjet < 0 rapidity region

pγ
T bin

(GeV)
Ratio (r) δσstat

(%)
δσsyst
(%)

δσ exp
tot

(%)

30–34 3.81 0.4 10.4 10.4
34–39 4.00 0.5 8.8 8.8
39–44 4.39 0.8 6.9 6.9
44–50 4.82 1.0 5.5 5.6
50–60 5.23 1.2 4.6 4.7
60–70 5.97 1.9 4.3 4.7
70–80 6.81 2.8 4.5 5.3
80–90 7.20 4.1 4.6 6.1
90–110 9.21 4.8 4.6 6.7
110–130 10.91 8.7 4.6 9.9
130–150 14.31 14.8 4.4 15.4
150–200 38.29 23.9 4.2 24.2

cias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CON-
ICET and UBACyT (Argentina); FOM (The Netherlands); Science and
Technology Facilities Council (United Kingdom); MSMT and GACR
(Czech Republic); CRC Program, CFI, NSERC and WestGrid Project
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Table 10
Ratios of the differential cross sections in the |yjet| < 0.8, yγ · yjet < 0 rapidity re-
gion to the 1.5 < |yjet| < 2.5, yγ · yjet < 0 rapidity region

pγ
T bin

(GeV)
Ratio (r) δσstat

(%)
δσsyst
(%)

δσ exp
tot

(%)

30–34 3.10 0.4 10.7 10.7
34–39 3.25 0.5 9.5 9.5
39–44 3.55 0.8 7.4 7.5
44–50 3.86 1.0 6.0 6.1
50–60 4.18 1.2 4.9 5.0
60–70 4.81 1.9 4.5 4.9
70–80 5.43 2.9 4.5 5.4
80–90 5.80 4.1 4.6 6.2
90–110 7.67 4.9 4.7 6.8
110–130 8.93 8.8 4.7 10.0
130–150 11.55 14.9 4.5 15.5
150–200 35.48 23.9 4.3 24.3

(Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish
Research Council (Sweden); CAS and CNSF (China); Alexander von
Humboldt Foundation; and the Marie Curie Program.
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